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Abstract Even for simple diffusion processes, treating first-passage problems analytically
proves intractable for generic barriers and existing numerical methods are inaccurate and
computationally costly. Here, we present a novel numerical method that is faster and has
more tightly controlled accuracy. Our algorithm is a probabilistic variant of dichotomic
search for the computation of first passage times through non-negative homogeneously
Hölder continuous boundaries by Gauss-Markov processes. These include the Ornstein-
Uhlenbeck process underlying the ubiquitous “leaky integrate-and-fire” model of neuronal
excitation. Our method evaluates discrete points in a sample path exactly, and refines this
representation recursively only in regions where a passage is rigorously estimated to be
probable (e.g. when close to the boundary).

As a result, for a given temporal accuracy in the location of the first passage time, our
method is orders of magnitude faster than direct forward integration such as Euler or sto-
chastic Runge-Kutta schemata. Moreover, our algorithm rigorously bounds the probability
that such crossings are not true first-passage times.

Keywords First-passage times · Gauss-Markov processes · Ornstein-Uhlenbeck process

1 Introduction

The time at which the continuous sample path of a stochastic process first reaches a given
boundary is a deceptively simple problem with manyfold practical applications. The first
attainment of the boundary can model the onset of a chemical reaction, the triggering of a
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limit order for a commodity or the firing of a neuronal action potential. Despite considerable
effort, studying the first-passage time problem remains among the “tough” problems in the
theory of stochastic processes [18, 32, 34]. For example, probability distributions of passage
times are known analytically only for the most trivial situations, such as a Wiener process
first crossing a straight boundary [19]. For more practical problems, first-passage times must
be computed by numerical integration, simulating many sample paths of the process until it
first crosses the boundary. Such an approach traditionally carries both practical and theoreti-
cal difficulties whether focusing on the computational cost of the method or on the accuracy
of the returned times [3, 16, 27].

For a class of simple stochastic processes, the Gauss-Markov processes [15, 17], which
includes the practically important Ornstein-Uhlenbeck process [37], numerical integration
can be performed in a completely different way. As closed-form knowledge of the condition-
ing formula [26] permits error-free sample path constructions at large time steps [2, 6, 11],
the only issue is estimating if the process has exceeded the boundary within a given timestep.
Thus, the process may be path-wise simulated at high resolution only on regions where such
a resolution is warranted [10, 33]. In particular, numerical effort can be devoted to accurately
reconstruct the process only when close to the boundary (for example through a dichotomic
refining procedure), but not when far from the boundary [12]. Such an approach has already
been advantageously used to evaluate expectation [13, 14].

The Ornstein-Uhlenbeck process is the most studied of the Gauss-Markov processes
[1, 29]. It is defined as the process U solution of the linear stochastic differential equation
of type

dUt = αUt dt + Γ dWt with U0 = u0. (1)

An example of first-passage problems for the Ornstein-Uhlenbeck process is the “leaky
integrate-and-fire” neuron [5, 20, 30, 31]. In this model, the process Ut represents the mem-
brane potential of a neuron: any time the voltage crosses a given threshold value, the cell
fires an action potential and resets its potential to a base value. More general Gauss-Markov
processes can be seen as Ornstein-Uhlenbeck processes for which the parameters α and Γ

become functions of time [4, 8, 21], such as in the case of the “leaky integrate-and-fire”
neuron with variable conductance.

We shall study computationally the first-passage problem of such generic Gauss-Markov
processes for continuous boundaries. It is known that two factors are important: the regular-
ity of the barrier, and the regularity of the coefficients in (1). These determine the existence
and regularity of a continuous density function for first-passage time [22], and prescribes the
speed of convergence of first-passage times computation [28, 38, 39]. We therefore make the
two following assumptions:

Coefficient Regularity Assumption: The Gauss-Markov processes are solution of a linear
stochastic equation with time-dependent non-positive, bounded function α and with time-
dependent positive, homogeneously Hölder continuous function Γ .

Barrier Regularity Assumption: The barrier function is assumed to be homogeneously
Hölder continuous and non-negative.

Since our algorithm is probabilistic in nature, it can return erroneous approximate time
values: in such cases, it always produces approximate crossing times that are not first-
passage times. However, the probability of occurrences of such errors can be tightly con-
trolled. Our algorithm is designed not to search for first-passages in time intervals where
the probability of such crossings is known to be less than a parameter value ε > 0. As a
consequence, our algorithm has the following essential property:
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Error Bound: Given a real η > 0 and a recursive depth N , choosing the parameter ln ε to
satisfy the criterion

ln ε < lnη − (N − 1) ln 2,

ensures that our algorithm returns an approximate first-passage time τN with a resolution
of 2−N , and with an error tolerance

E (N, ε) = P
(
τN − τ > 2−N−1

) ≤ η,

where τ is the true first-passage.

The paper is organized in two parts. In the method part, we introduce the prerequisite
analytical results. We then present the implementation of the algorithm and illustrate it on
simple examples. In the analysis part, we apply our method to the seminal case of a Wiener
process, for which an analytical treatment is possible. We conclude by discussing how the
parameters should be set to achieve computational efficiency with controlled accuracy.

2 Methods

2.1 Background

In this preliminary section, we formally define the first-passage problems and introduce
some important known results about stochastic processes. This section is rather technical
and can be skipped by readers familiar to the subject. The important points to retain are
the discrete construction of the Gauss-Markov processes as exemplified in Fig. 1 and the
analytical result (9) about the probability of a classical Wiener process crossing a linear
barrier.

2.1.1 Definitions and Notations

A continuous-time real stochastic process X is a collection of real random variables Xt de-
fined for a continuous index set of t on some abstract underlying measurable space (Ω, F ),
where Ω is the sample space and F denotes its associated σ -field. Assuming the index set
to be [0,∞), the process X takes values in the space of functions [0,∞) × R. For every
realization ω in Ω , we call the outcome function t �→ Xt(ω) a sample path or trajectory of
the process X. The natural filtration Ft ⊂ F is just the intersection of the σ -algebra σ(Xs)

generated by Xs for 0 ≤ s < t and represents the past history of the process at time t .
In the following, we assume that the process X is continuous, i.e. that it has continuous

pathways t �→ Xt(ω) for any ω in Ω . The state space of X is the set of continuous functions
on [0,∞) that are zero-valued at zero. Such a space is called the Wiener space C0[0,∞) and
is naturally provided with the σ -field B(C0[0,∞)) generated by the cylinder sets Ct (A) =
{x ∈ C0[0,∞)|x(t) ∈ A}, where A is a real Borelian in B(R). Then, it is always possible
to equip (Ω, F ) with a probability measure P, so that X induces its law measure PX−1 on
B(C0(0,∞)) defined on the generating cylinder sets Ct (A) by:

PX−1(Ct (A)) = P({ω | Xt(ω) ∈ A}) def= P(Xt ∈ A).

Thus specified on the probability space (Ω, F ,P), the process X is entirely characterized
by its law PX−1 .
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Fig. 1 In the left column, the
elements of the basis Ψn,k are
represented for each rank n with
0 ≤ n < 6 in the case of
α(t) = −β/(t + θ) with β = 4
and θ = 0.01. In the right
column, a sample path of the
process Xn = E(X | {Xs },
s ∈ Dn = {k2−n | 0 ≤ k ≤ 2n}
with Dn = {k2−n | 0 ≤ k ≤ 2n}.
Each element Ψn,k has a compact
support delimited by dyadic
numbers in Dn and all Ψn′,k are
zero on Dn for n′ < n. At a fixed
rank n, the time-dependence of α

entails the varying shape of the
basis elements Ψn,k . Note that
this variation in shape disappears
for vanishing scale when, for
increasing n, the basis elements
tends to the classical Schauder
elements of the Wiener process

We are now in a position to formally define the Gauss-Markov processes. Given some
probability space (Ω, F ,P), let X be a continuous stochastic process with natural filtra-
tion Ft . Then X is a Gauss-Markov process if it satisfies both Gaussian and Markov prop-
erties:

1. X is a Gaussian process if, for any integers k and positive reals t1 < t2 < · · · < tk , the
random vector (Xt1 ,Xt2 , . . . ,Xtk ) has a joint Gaussian distribution.

2. X is a Markov process if, for any s, t ≥ 0 and A ∈ B(R),

P (Xt+s ∈ A | Fs) = P (Xt+s ∈ A | Xs) ,

which states that the conditional probability distribution of future states Xt+s , given the
present state and all past states Fs , depends only upon the present state Xs .

After these preliminary definitions, let us introduce the first-passage problem. For an ar-
bitrary continuous function L, impose the conditioning Xt0 = x0 ≤ L(t0) and consider the



1134 T. Taillefumier, M.O. Magnasco

random variable τL
s on (Ω, F ,P)

τL
s (ω) = inf

{
t ≥ s |Xt (ω) ≥ L(t)

}
.

The random variable τL
s thus defined is a stopping time with respect to Ft and is called the

first passage time of X for a boundary condition L. The first-passage time problem consists
in evaluating the distribution of τL

s on [s,+∞). Furthermore, as we specifically deal with
barriers that are homogeneously Hölder continuous, we recall the definition of the set H of
such functions on a given interval [0, T ]

H =
{
L ∈ C[0, T ] | ∃δ > 0, sup

0≤t,s≤T

|L(t) − L(s)|
|t − s|δ < ∞

}
,

where C[0, T ] denotes the set of continuous function on [0, T ].

2.1.2 Doob’s Integral Representation

If X is a centered Gauss-Markov process with X0 = 0 on (Ω, F ,P) with F containing the
natural Brownian filtration, there exists a positive non-zero function g and a function f in
L2

loc(R
+) such that

Xt = g(t)

∫ t

0
f (u)dWu, (2)

where W denote a classical Wiener process on (Ω, F ,P).1 This representation of X in terms
of a stochastic integral with respect to the Wiener process is called the Doob’s representa-
tion [9]. If we introduce the non-decreasing function h as

h(t) =
∫ t

0
f 2(u) du,

then, for any t > t0 ≥ 0, the forward conditioning formula p(x, t | x0, t0) dx = P(Xt ∈ dx |
Xt0 = x0) is expressed in terms of functions h and g

p(x, t | x0, t0) = 1

g(t)
√

2π(h(t) − h(t0))
· exp

(
− ( x

g(t)
− x0

g(t0)
)

2

2(h(t) − h(t0))

)
. (3)

Under the condition of derivability of g, the process X is solution of the stochastic equation

d

(
Xt

g(t)

)
= f (t) dWt .

It is desirable to write X as a solution of the equation

dXt = α(t) · Xt dt + √
Γ (t) dWt , (4)

1If (Ω, F ,P) is not large enough to contain the natural Brownian filtration, we can always define W on an
appropriate extension of the original probability space.
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because α is easily interpreted in term of an elastic force and Γ in term of noise intensity.
The functions α and Γ need satisfying the following relations

α(t) = g′(t)
g(t)

and
√

Γ (t) = g(t)f (t),

conditions that we can equivalently express under the reciprocal form

g(t) = e
∫ t

0 α(u)du and h(t) =
∫ t

0
Γ (u) · e−2

∫ u
0 α(v)dv du.

In that respect, we remark that the centered Gauss-Markov processes notably includes the
centered Ornstein-Uhlenbeck process Uα with f (t) = √

Γ ·eαt and g(t) = e−αt . We restrain
the scope of our algorithm to the first-passage problem for processes X that are solution of
(4) with α non-positive. This stems from the fact that for such α, it is possible to find under a
simple analytical form an upper bound to the probability of a crossing a non-negative barrier
within a given interval.

2.1.3 Discrete Construction of Gauss-Markov Processes

Given some reals tx < ty < tz, the conditioning formula for Gaussian processes together
with the Markov property yield the distribution of Xty knowing Xtx = x and Xtz = z [36]. It
can be shown that the corresponding probability density is the normal law N (μ(ty), σ (ty)),
where μ(ty) denotes the time-dependent mean

μ(ty) = g(ty)

g(tx)
· h(tz) − h(ty)

h(tz) − h(tx)
· x + g(ty)

g(tz)
· h(ty) − h(tx)

h(tz) − h(tx)
· z, (5)

and σ(ty) is the time-dependent standard deviation defined by

σ(ty)
2 = g2(ty) · (h(ty) − h(tx))(h(tz) − h(ty))

h(tz) − h(tx)
. (6)

We emphasize that whereas the mean depends on the conditioning Xtx = x and Xtz = z, the
variance only exhibits time-dependence.

Let ξn,k with n ≥ 0 and 0 ≤ k < 2n−1 be Gaussian random variables of law N (0,1) on
the probability space (Ω, F ,P). Under assumption that g and h are continuous on [0,1], we
use relations (5) and (6) in [35] to show that there exists a basis of continuous functions Ψn,k

for n ≥ 0 and 0 ≤ k < 2n−1 such that the random variable

XN
t =

N∑

n=0

∑

0≤k<2n−1

Ψn,k(t) · ξn,k (7)

follows the same law as the conditional expectation of Xt with respect to the filtration gen-
erated by {Xk/2N } for 0 ≤ k ≤ 2N (see Appendix B). If DN denotes the dyadic ensemble
{k2−N |0 ≤ k ≤ 2N }, it just means that the process XN follows the same law as the con-
ditional expectation E(Xt | {Xs}, s ∈ DN), considered as a function of the random vari-
ables Xs with s in DN . By construction, the functions Ψn,k thus defined have support in
Sn,k = [k · 2−n+1, (k + 1)2−n+1] for n ≥ 1. Moreover, the path-wise limit limN→∞ XN de-
fines almost surely a continuous process which is an exact representation of X.
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The functions Ψn,k admit simple analytical expression in terms of functions g and f , as
shown in Appendix B. Unfortunately the mean μ(ty) and the variance σ(ty)

2 as well as the
basis elements Ψn,k display more complicated integral formulations in terms of α and Γ .
Yet, these quantities can be expressed in closed form in favorable situations as exemplified
in Fig. 1.

2.1.4 Analytical Results on First-Passage Times

Interesting analytical results are available for the distribution of first-passage times in the
case of simple processes derived from the classical Wiener process W .

First, we mention the situation of a time-changed Wiener process X with a constant
threshold Λ. By time-changed process, we mean that X is solution of (4) for α set to zero:
indeed the function h is then equal to

h(t) =
∫ t

0
Γ (u)du

and it is known that the process X has the same law the time-changed process {Wh(t), Fh(t);
0 ≤ t ≤ 1}, where W = {Wt, Ft ;0 ≤ t ≤ h−1(1)} is a standard Wiener process. For such
processes, the strong Markov property and the reflection principle allow us to compute the
joint probability of the running maximum of X between any two times tx and tz and of the
end value of X in tz. Let assume that Xtx = x, if we denote

Mtx,tz = max
tx≤t≤tz

Xt ,

it is known [19] that we have for any λ ≥ x, z

P
(
Xtz ∈ dz,Mtx,tz ∈ dλ | Xtx = x

)

= 2 · (2λ − (x + z))
√

2π(h(tz) − h(tx))3
· exp

(
− (2λ − (x + z))2

2(h(tz) − h(tx))

)
dλdz.

As shown in Appendix C1, direct manipulations of this expression yields the probability for
the process X to reach a constant threshold Λ between the times tx and tz

P
(
τΛ
tx

< tz | Xtx = x, Xtz = z
) = exp

(
−2 · (Λ − x)(Λ − z)

h(tz) − h(tx)

)
. (8)

Second, for general Gauss-Markov processes, it is possible to chose a barrier interpolating
two given points (tx,Lx) and (tz,Lz), so that a similar result holds. Indeed, for to the case
of a standard Wiener process and an affine barrier

L(t) = tz − t

tz − tx
· Lx + t − tx

tz − tx
· Lz,

it is possible to show that we have

P
(
τL
tx

< tz | Xtx = x, Xtz = z
) = exp

(
−2 · (Lx − x)(Lz − z)

tz − tx

)
,

assuming suitably that x ≤ Lx and z ≤ Lz (see Appendix C2). From there, we can use the
well known fact that the Gauss Markov process X has the same law as {g(t)Wh(t), Fh(t);0 ≤
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t ≤ 1}, with W = {Wt, Ft ;0 ≤ t ≤ h−1(1)} a standard Wiener process [9], to express an
equivalence between the first-passage problem of W with L and the first-passage problem
of X with a well-chosen barrier. More precisely, we demonstrate in Appendix C3 that, if we
define the barrier to be μ(t), the mean value of Xt conditioning to Xtx = Lx and Xtz = Lz,
we have

P
(
τ

μ
tx < tz | Xtx = x, Xtz = z

) = exp

(
− 2 (Lx − x) (Lz − z)

g(tz)g(tx)(h(tz) − h(tx))

)
. (9)

Unfortunately, if there are other analytical results holding for some Gauss-Markov process
X [23, 24], none of them are of relevance for first-passage problems with non-specified
continuous barrier. Yet, expression (8) and (9) proves of particular interest to estimate the
probability for a Gauss-Markov process X to hit the barrier L within a certain time interval
[tx, tz]. We use extensively these results in our proposed algorithm.

2.2 Algorithm

We now turn to our algorithm that efficiently computes the distribution of first-passage times
for a general class Gauss-Markov processes X and of continuous thresholds L. It consists
in implementing recursively a dichotomic search for the first crossing of simulated sample
paths with the boundary, assuming the following facts:

Assumption 1 The Gauss-Markov process X under scrutiny are solutions of (4) with
√

Γ

in the set of homogeneously Hölder continuous functions and with α being a non-positive
function, bounded on every compact support [0, T ], T > 0.

Assumption 2 The barrier L is a non-negative homogeneously Hölder continuous function
on every compact support [0, T ], T > 0.

Bearing in mind these restrictions under which we operate, we proceed to explain the
algorithm in several stages.

First, we explicit the recursive scheme for simulating Gauss-Markov sample paths. Sec-
ond, we give the plain dichotomic search algorithm for first-passages. Third, we elaborate
the probabilistic version of the dichotomic search by adding a probabilistic screening at each
recursive step: the recursive construction of sample paths is only further if the probability
of a crossing within a given time interval, is estimated greater than some small parameter ε.
Fourth, in order to check the previous probabilistic screening, we establish an upper bound
to the conditional probability that a crossing happens in a given segment, knowing the value
of the sample paths at the endpoints of that segment. Fifth, we detail the base case respon-
sible for the termination of the algorithm at the resolution limit: we simulate a first-passage
in an end segment with the exact same probability as the probability that the Gauss-Markov
process crosses a particular continuous function that interpolates the barrier at the endpoints.
Sixth, we summarize formally the whole algorithm by giving its condensed mathematical
formulation. Finally, we illustrate the algorithm on two simple examples, one of which is
analytically solvable.

2.2.1 Recursive Schema for the Sample Paths

Beforehand, let us introduce the following short notations to simplify the writing of forth-
coming expressions

ln,k = (2k)2−n, mn,k = (2k + 1)2−n, rn,k = 2 (k + 1)2−n.
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Remark that the support Sn,k can be written as [ln,k, rn,k], that DN−1 = {lN,k, rN,k | 0 ≤ k <

2N−1} and that DN \ DN−1 = {mN,k | 0 ≤ k < 2N−1}. Also notice that the support Sn,k con-
stitute a binary tree of nested compact supports: up to the point mn,k , we have the partition
Sn,k = Sn+1,2k ∪ Sn+1,2k+1 and we can identify mn,k with rn+1,2k and ln+1,2k+1. We say that a
sample path is simulated up to depth N or with resolution 2−N if the value of t �→ Xt(ω) for
a given ω have been simulated for every time t in the dyadic set DN .

Now, assume we can generate a collection of random variables ξn,k simulating indepen-
dent normal laws N (0,1) on some probability space (Ω, F ,P). Then expressions (5) and
(6) provide us with an exact iterative scheme to simulate a sample path of X appropriately
defined on (Ω, F ,P) and up to a depth N . Indeed, supposing that we have simulated the
values of Xt for two consecutive dyadic points ln,k and rn,k in DN−1, we can simulate the
outcome of Xt at the midpoint mn,k in DN \ DN−1 by drawing a random variable

Xmn,k
= σ(mn,k) · ξn,k + μ(mn,k),

where σ(mn,k) and μ(mn,k) are given by the conditioning formula at mn,k . If we posit Xln,k
=

xn,k and Xrn,k
= zn,k , direct translation of (5) and (6) yields

μ(mn,k) = g(mn,k)

g(ln,k)
· h(rn,k) − h(mn,k)

h(rn,k) − h(ln,k)
· xn,k

+ g(mn,k)

g(rn,k)
· h(mn,k) − h(ln,k)

h(rn,k) − h(ln,k)
· zn,k,

σ (mn,k) = g(mn,k)

√
(h(mn,k) − h(ln,k))(h(rn,k) − h(mn,k))

h(rn,k) − h(ln,k)
.

The basis step of the recurrence, i.e. the simulation of a value z0,0 at r0,0 knowing x0,0 at l0,0,
is immediate by direct application of the forward conditioning formula (3).

From there, the refinement of a simulated sample path t �→ Xt(ω) for a given ω satisfying
Xln,k

(ω) = xn,k and Xrn,k
(ω) = xn,k and up to depth N ≥ n, is implemented recursively as

follows:

Procedure 1 subdivide(ln,k, xn,k, rn,k, zn,k)

if rn,k − ln,k = 2−N then
basecase(ln,k, xn,k, rn,k, zn,k)

else
simulate the value yn,k of the sample path at mn,k

subdivide(ln+1,2k, xn,k, rn+1,2k, yn,k)
subdivide(ln+1,2k+1, yn,k, rn+1,2k+1, zn,k)

end if

The function basecase in Procedure 1 merely implements the termination of the recur-
sion. The interest of that scheme lies in the fact that it is constructed on a binary tree of
nested supports, allowing us to refine the simulation of a sample path on any given Sn,k

independently of others disjoint supports Sn′,k′ .
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2.2.2 Recursive Dichotomic Search of First-Passage Times

In order to compute first-passage times in a support Sn,k , a straightforward algorithm consists
in constructing sample paths with depth N until a drawn value occurs above the barrier L,
or until the constructed path reaches the endpoint rn,k of Sn,k staying below L.

As observable in Procedure 2, we just have to alter the recursive scheme in Procedure 1 to
integrate the following idea: if there is a time s in Sn,k for which Xs(ω) ≥ L(s), by continuity
of the sample paths, we know that a crossing has occurred before s; therefore, we have to
disregard continuing the simulation of the sample path t �→ Xt(ω) for time t following s.

Procedure 2 passage(ln,k, xn,k, rn,k, zn,k)

if rn,k − ln,k = 2−N then
return basecase(ln,k, xn,k, rn,k, zn,k)

else
simulate the value yn,k of the sample path at mn,k

if yn,k ≥ L(mn,k) then
return passage(ln,k, xn,k,mn,k, yn,k)

else
if time = passage(ln,k, xn,k,mn,k, yn,k) > 0 then

return time;
else

return passage(mn,k, yn,k, rn,k, zn,k)
end if

end if
end if

Procedure 2 will form the backbone of our algorithm and we refer to it as a dichotomic
search algorithm. For any simulated sample path t �→ Xt(ω), the method relies on the recur-
sive exploration of the binary tree of dyadic segments Sn,k , effectively investigating in the
prefix order every segment for which xn,k is below the barrier L.

However, for a given sample path, it is obviously possible that no first-passage occurs
within S0,0, the root segment of the binary tree of supports. We then need to simulate such
sample paths t �→ Xt(ω) for time t later than r0,0. In other words, we have to simulate
values of the sample path for every time step d0 = r0,0 − l0,0 by successive application of the
forward conditioning formula (3), and then initiate a recursive search during any of these
time steps.

Remark 1 It is possible that the expected first-passage time diverges (for instance, in the
case of a Wiener process with a constant barrier). To circumvent this predicament, we have
to limit the scope of the search to a given compact segment [0, T ].

2.2.3 Probabilistic Screening of First-Passage Times

Denote Pn,k the probability for the process X to cross the boundary L between ln,k = k2−n+1

and rn,k = (k + 1)2−n+1 knowing Xln,k
and Xrn,k

, the value of X on two successive points
in DN−1. Thus defined, Pn,k is a random variable on the probability space (Ω, F ,P). More
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Procedure 3 searchfirstpassage
r0,0 = 0
z0,0 = 0
time = 0
while time = 0 do

l0,0 ← r0,0

x0,0 ← z0,0

r0,0 ← r0,0 + d0

simulate the value z0,0 of the sample path at r0,0

time = firstpassage(l0,0, x0,0, r0,0, z0,0)
end while
return time

formally, we write Pn,k as the conditional probability

Pn,k = P
(
τL
ln,k

∈ Sn,k = [ln,k, rn,k] | Xln,k
,Xrn,k

)
.

Still, as X is a Markov process, Pn,k knowing Xln,k
= xn,k and Xrn,k

= yn,k , becomes a de-
terministic function of the times ln,k and rn,k and the corresponding values xn,k and yn,k . We
will simply write the outcome of Pn,k as Pn,k(ω) = Pn,k(xn,k, zn,k) making the dependence
on ln,k and rn,k implicit.

Assuming that we are provided with an estimation of Pn,k(xn,k, zn,k), we can choose
to refine the simulation of t �→ Xt(ω) only if the probability for a crossing to happen is
larger than what is admissible: typically a small positive real ε chosen according to the total
number of simulated paths and the desired level of accuracy. Formally stated, at a given
depth n, we only investigate a sample path t �→ Xt(ω) between two consecutive dyadic
times ln,k and rn,k if the outcome of Pn,k for the particular occurrence ω is larger than ε.

The idea behind this probabilistic screening is to search for first-passage times by only
simulating the process on the dyadic points where the outcomes happen close enough to
the boundary L. Since exact computation of Pn,k(xn,k, zn,k) is impossible, we need a simple
analytical upper bound Bn,k to Pn,k : we can always discard recursive searches in supports
Sn,k for sample path satisfying Pn,k(ω) ≤ Bn,k(ω) ≤ ε.

We refer to the underlying algorithm of Procedure 4 as a probabilistic dichotomic search
algorithm. Two rules of exploration of the binary tree Sn,k are implemented: we discard the
branches of the tree issued from a root segment for which Bn,k(ω) ≤ ε; we only explore the
branches occurring before any dyadic point t for which Xt(ω) exceeds L(t). We detail in
the following section how to compute an upper bound to the probability Pn,k .

2.2.4 Upper Bound to the Probability of First-Passage Time

For an homogeneously Hölder continuous non-negative boundary, we introduce the binary
tree of minima of L on the compact supports Sn,k as

Ln,k = inf
t∈Sn,k

L(t).

We stress that this structure needs to be computed for the implementation of the algorithm: if
the threshold function L is of simple analytical expression, the values Ln,k can be evaluated
dynamically; otherwise the tree of minima should be evaluated numerically once and for all.
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Procedure 4 passage(ln,k, xn,k, rn,k, zn,k)

if rn,k − ln,k = 2−N then
return basecase(ln,k, xn,k, rn,k, zn,k)

else
compute the upper bound Bn,k(xn,k, zn,k)

if Bn,k(xn,k, zn,k) > ε then
simulate the value yn,k of the sample path at mn,k

if yn,k ≥ L(mn,k) then
return passage(ln,k, xn,k,mn,k, yn,k)

else
if time = passage(ln,k, xn,k,mn,k, yn,k) > 0 then

return time;
else

return passage(mn,k, yn,k, rn,k, zn,k)
end if

end if
end if

end if

We remark in Appendix D that, as long as the function α remains non-positive on Sn,k

and that Ln,k ≥ max(x,0), we have

P
(
τL
ln,k

< rn,k | Xln,k
= x, Xrn,k

= z
)

≤ P
(

τ ′Ln,k

ln,k
< rn,k

∣
∣∣Yln,k

= x, Yrn,k
= g(ln,k)

g(rn,k)
z

)
,

with τ ′Ln,k

ln,k
= inf{t > ln,k | Yt ≥ Ln,k}, where Y is a scaled time-changed Wiener process

defined by

Yt = g(t)

g(tx)
Whtx (t), htx (t) = g2(tx)

(
h(t) − h(tx)

)
.

If we denote Bn,k(x, z) the probability of Y to reach a constant threshold Ln,k knowing that
Yln,k

= x and Yrn,k
= g(ln,k)z/g(rn,k), expression (8) allows us to define a random variable

Bn,k on the probability space (Ω, F ,P)

Bn,k = exp

(
−2 ·

(Ln,k − Xln,k
)(

g(rn,k )

g(ln,k)
Ln,k − Xrn,k

)

g(rn,k)g(ln,k)(h(rn,k) − h(ln,k))

)
, (10)

satisfying the desired upper bound condition Pn,k ≤ Bn,k .
We emphasize that the need to compute a binary tree of minimum Ln,k is a crucial step

to implement our algorithm. Indeed, we can be in situations where the starting time t0 of
the process is not known in advance, such as for the simulation of a train of spikes for a
noisy “leaky integrate and fire” neuron. In this model, after a first-passage time (or spiking
event) with a given barrier (or firing threshold), the neuron is reset to its initial condition
(or resting potential), its state (or electric potential) then evolves as an Ornstein-Uhlenbeck
process until it reaches again the firing threshold. It is easy to show that the evaluation of
consecutive first-passage events is actually equivalent to consider a first-passage problem
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with a class of time-shifted barrier for varying initial condition [30]. In such cases, our
construction scheme uses a floating binary tree of supports S ′

n,k which depends on the time
shift t0 = l0,0. We cannot assume it will superimpose the binary tree of minimum Ln,k , since
for computational cost we compute it once and for all on the partition Sn,k for a given shift,
say t0 = 0. This complication is overcome by defining

Bn,k = exp

(
−2 ·

(L′
n,k − Xln,k

)(
g(rn,k )

g(ln,k)
L′

n,k − Xrn,k
)

g(rn,k)g(ln,k)(h(rn,k) − h(ln,k))

)

with L′
n,k = min(Ln,k1

,Ln,k2
), where k1, k2 are computed as the only two admissible integers

satisfying S ′
n,k ∩ Sn,k1 �= ∅ and S ′

n,k ∩ Sn,k2 �= ∅ up to the endpoints. Indeed the minimum
of the barrier L on given floating supports S ′

n,k is always less than the minimum of L on
Sn,k1 ∪ Sn,k2 ⊃ S ′

n,k .

2.2.5 Treatment of the Base Case

If N denotes the maximum depth of exploration, a naive idea is to consider that no cross-
ing has occurred in a limit segment SN+1,k of length 2−N , unless the last simulated value
zN+1,k is larger than L(zN+1,k). As the algorithm explores the tree of nested support Sn,k

in the prefix order,2 any such crossing in a limit segment SN+1,k has to be a first-pasage,
whose timing can be arbitrarily set to mN+1,k . However, this approach is very unsatisfactory
because it neglects the potential occurrence of a crossing between two consecutive points
in DN which are below the barrier L. This eventuality cannot be discarded and is a major
source of error in the simulation of first-passage times. To circumvent this issue, it is much
more preferable to assess PN+1,k(xN+1,k, zN+1,k), the probability of occurrence of a crossing
in a limit segment SN+1,k .

Since the function t �→ LN+1,k(t) is a piecewise constant function on S0,0, the first-
passage problem for this presumably discontinuous barrier is not well posed and the upper
bound BN+1,k(xN+1,k, zN+1,k) yields an inconvenient estimate of PN+1,k . For some x and z

such that x ≤ L(lN,k) and z ≤ L(rN+1,k), it is actually preferable to approximate PN+1,k(x, z)

by

QN+1,k(x, z) = exp

(
− 2(L(lN+1,k) − x)(L(rN+1,k) − z)

g(rN+1,k)g(lN+1,k)(h(rN+1,k) − h(lN+1,k))

)
. (11)

Recalling expression (9), QN+1,k(x, z) just gives the probability that the process X condi-
tioned by XlN+1,k

= x and XrN+1,k
= z, crosses the barrier μN , which is defined such that

for any t in SN+1,k , μN(t) is the expected value of Xt knowing XlN+1,k
= L(lN+1,k) and

XrN+1,k
= L(rN+1,k). Thus, the algorithm approximates the barrier L by a piecewise con-

tinuous function μN interpolating L on the dyadic numbers DN . With such a piecewise
barrier, the first-passage problem for the Wiener process is well-posed and yields consistent
estimates of PN+1,k at the limit depth when N tends to infinity. Moreover, notice that in
the limit of large N , the interpolating approximation of the barrier rapidly converges to the
linear piecewise interpolation.

2Remember that for any explored segment Sn,k , we necessarily have xn,k < L(ln,k).
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Procedure 5 basecase(ln,k, xn,k, rn,k, zn,k)

if zn,k ≥ L(rn,k) then
return mn,k

else
compute the estimate Qn,k(xn,k, zn,k)

draw ξ a uniformly between 0 and 1
if ξ ≤ Qn,k(xn,k, zn,k) then

return mn,k

else
return 0

end if
end if

2.3 Formal Definition of the Algorithm

We now recapitulate formally the recursive procedure for the dichotomic search of a first-
passage within the segment [0,1]. We aim at computing approximate occurrences τN of
the true first-passage time τ , with an resolution of 2−N . In that perspective, assume we are
provided with two families of independent identically distributed random variables {ξn,k},
0 ≤ n <N , 0 ≤ k < 2n−1 of normal law N (0,1), and {υk}, 0 ≤ k < 2N , of uniform law
U(0,1).

Definition 1 The definition of the approximate sample path τN of our algorithm proceeds
as follows:

1. The values of a sample path X at the endpoints of [0,1] are given by

I0 = {0,1}, X0
0 = 0, X0

1 = g(1)
√

h(1) · ξ0,0.

By induction, for 1 ≤ n ≤ N , we define:
(a) The set of indices

Kn = {
0 ≤ k < 2n−1 | Bn,k(X

n−1
ln,k

,Xn−1
rn,k

) > ε
}
,

indicating the segments in which a crossing is to be investigated. The supports Sn,k ,
with k in Kn, is thus inductively defined as the set of supports with dyadic endpoints
in Dn−1, for which the corresponding upper bound Bn,k is not small enough for the
probability of a crossing to be neglected.

(b) Corresponding to the supports Sn,k , for k in K, we define the set of dyadic times

Ln = {ln,k | k ∈ Kn}, Mn = {mn,k | k ∈ Kn}, Rn = {rn,k | k ∈ Kn},
which consists of the left points, midpoints and right points.

(c) The values of Xn
t , for dyadic times in Ln ∪ Mn ∪ Rn by

∀t ∈ Ln ∪ Rn, Xn
t = Xn−1

t ,

∀t ∈ Mn, Xn
t = σ(t) · ξn,2N t + μ(t)

from the values of {Xn−1
t }t∈Dn−1 and the random drawings of ξn,k .
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2. For each 1 ≤ n ≤ N , the algorithm disregard any time following the occurrence of a value
above the barrier L, that is, defining

tn = inf
{
t ∈ Ln ∪ Mn ∪ Rn | Xn

t ≥ L(t)
}
,

the algorithm investigates for a first-passage time in dyadic segments Sn,k delimited by
endpoints in the set

In = {
t ∈ Ln ∪ Mn ∪ Rn | t ≤ tn

}
.

In the previous definition of tn, we observe the convention that inf∅ = 1 to account for
the possibility of a first-passage, even if all the simulated value of {Xn

t }t∈Dn , are below
the barrier.

3. Finally, we define formally the approximate first-passage time τN as

τN = inf
{
t ∈ IN | QN+1,2N t (X

N
t ,XN

t+2N t
) ≥ υ2N t

} + 2−N−1.

The time τN is then the midpoint of the first support SN,k , k in IN on which a simulated
sample path of X interpolating {XN

t }t∈IN
would cross μN(t), the piecewise continuous

approximation of L interpolating its value on the dyadic points DN .

2.4 Examples

We illustrate the use of the algorithm in the simple case of an Ornstein-Uhlenbeck process U

with an elastic coefficient α = −1 and a noise intensity Γ = 1.
Considering the case of a constant barrier at Λ = 1, we represent in Fig. 2 the simulation

of a sample path up to a first-passage time. Remark that the sample path is simulated with
increasing precision close to the barrier. The zooming operations in time regions where
the path is about to cross the threshold underscore this fact. Figure 2 exemplifies a rather
unfavorable situation: the first-passage occurs relatively late in time, about 4 times later
than its expected value, and the sample path wanders three times in the close vicinity of the
barrier. Notice that, despite this, the algorithm only needs computing 683 sample points,
when the simulation of a sample path at full resolution would have required to compute
more than 8 × 106 sample points.

In the particular case of a constant barrier set to Λ = 0, the probability density of the
first-passage time is known analytically. If we assume the initial condition U0 = −1, we
actually have [1]

P(U τ 0
−1 ∈ dt) = 1√

2π

(
1

sinh(t)

) 3
2

exp

(
− e−t

2 sinh t
+ t

2

)
dt.

In Fig. 3, we compare the inferred distribution function obtained from binning the first-
passages of our algorithm with this true probability density function. As apparent in loga-
rithmic coordinates, the agreement is excellent.

3 Analysis

In the present part, we analyze the behavior of the algorithm. First, due to its analytical
tractability, we review the properties of the probabilistic screening in the seminal case of
a Wiener process with a constant threshold. Second, we study in detail the computational
efficiency and accuracy of our algorithm in the general case set by Assumptions 1 and 2
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Fig. 2 (Color online) We
consider the first-passage prob-
lem for an Ornstein-Uhlenbeck
process U with an elastic
coefficient α = −1 and a noise
intensity Γ = 1, the barrier is
constant Λ = 1 and the initial
condition is U0 = 0. We
represent at different scales a
realization Ut (ω) for which the
algorithm returns a first-time
passage τ(ω) = 8.00469684 with
a resolution δt = 2−21 =
5 × 10−7 after 5 recursive calls.
The whole sample path is
represented in (a.) and a series of
zooms is carried out around τ(ω)

in (b.), (c.), (d.). The dilation
coefficients are set according to
the scale invariance of a Wiener
process with the time scale being
expanded by 20 and the distance
scale by 4

√
5 during each

dilation. The series (b′ .), (c′ .) and
(c′′.), (d′′.) zoom on regions
where the sample path gets close
to the barrier. The simulation of
the sample path has required 683
subdivisions and illustrates an
unfavorable situation since the
expected number of divisions is
approximatively 284 for this
particular setting

Fig. 3 (Color online) We
consider the first-passage prob-
lem for an Ornstein-Uhlenbeck
process U with an elastic
coefficient α = −1 and a noise
intensity Γ = 1, the barrier is
constant Λ = 0 and the initial
condition is U0 = −1. The black
thin line represents the exact
distribution of first-passage
times, which is known
analytically in the specific case of
a barrier set to zero. The red dots
are obtained by populating an
histogram of 103 bins with 106

first-passage times simulations
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3.1 Statistical Screening for the Wiener Process with Constant Threshold

The statistical screening of the algorithm consists in checking whether a recursion call ter-
minates before the limit resolution, in which case it finds Bn,k ≤ ε if the support Sn,k is
under scrutiny. For each search, the algorithm constructs a binary tree of visited supports
Sn,k constructed by recursive statistical screening. It generally proves intractable to study
the statistics of such binary trees because the random variables Bn,k exhibits non-trivials
dependences across and within levels of the binary tree.

Yet, the simple situation of a standard Wiener process W and a constant barrier Λ is more
propitious to characterize the statistical screening. Indeed, in this specific case, the upper
bound Bn,k becomes rigorously equal to the probability of crossing Pn,k , which simplifies
the interpretation of the results.

In the following, we study the statistical properties of such screening rules. First, we ex-
plicit the conditional law of Bn+1,2k and Bn+1,2k+1 knowing Xln,k

= xn,k and Xrn,k
= zn,k .

Second, in light of this result, we describe when halting because Bn,k ≤ ε, leads to an erro-
neous approximation of a first-passage time is given. Third, we use the statistical property
of the conditional probability to characterize the asymptotic behavior of the bound Bn,k at
vanishing scale.

3.1.1 Statistics of the Upper Bounds

Suppose we explore a sample path t �→ Wt(ω) for which W(ln,k) = xn,k < Λ and W(rn,k) =
zn,k < Λ and posit the corresponding probability Pn,k(xn,k, zn,k) = Bn,k(xn,k, zn,k) = pn,k .
The rule of exploration of the binary tree is the following. If pn,k > ε, the algorithm proceeds
to a refinement of the path by simulating a sample value yn,k at mn,k . Incidentally, such an
operation gives rise to the evaluation of the two probabilities Bn+1,2k(xn,k, yn,k) = pn+1,2k

and Bn+1,2k+1(yn,k, zn,k) = pn+1,2k+1. Next, the algorithm continues the exploration of Sn,k

by investigating the left support Sn+1,2k if pn+1,2k > ε or by investigating the right support if
pn+1,2k ≤ ε and pn+1,2k+1 > ε.

Here, we express the conditional law of the variables Bn+1,2k and Bn+1,2k+1 knowing
Xln,k

= xn,k and Xrn,k
= zn,k . Beforehand, in order to underline the dependence on Bn,k , we

reformulate the previous conditioning under the equivalent form Bn,k = pn,k and �n,k = δn,k ,
with

�n,k = Λ − Xln,k

Λ − Xrn,k

and δn,k = Λ − xln,k

Λ − xrn,k

.

The result is the following:

Property 1 Assuming Bn,k = pn,k and �n,k = δn,k , the conditional variables {Bn+1,2k |
Bn,k,�n,k} and {Bn+1,2k+1 | Bn,k,�n,k} follow respectively the lognormal laws

{Bn+1,2k | Bn,k,�n,k} ∼ log N
(
(1 + δn,k) lnpn,k,

√−2 lnpn,k

)
, (12)

{Bn+1,2k+1 | Bn,k,�n,k} ∼ log N
(
(1 + 1/δn,k) lnpn,k,

√−2 lnpn,k

)
. (13)

Proof Definition (11) allow us to write the random variables Bn+1,2k and Bn+1,2k+1 knowing
Wln,k

= xn,k and Wrn,k
= zn,k as

Bn+1,2k = e
− (Λ−xn,k )(Λ−Wmn,k

)

Γ ·2−(n+1) and Bn+1,2k+1 = e
− (Λ−zn,k )(Λ−Wmn,k

)

Γ ·2−(n+1) .
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The natural scale invariance of the problem suggests to introduce the random variables
Un,k = (Λ − Wln,k

)/
√

Γ · 2−n and Vn,k = (Λ − Wrn,k
)/

√
Γ · 2−n, as well as their hyperbolic

counterparts Πn,k = Un,k · Vn,k and �n,k = Un,k/Vn,k . The conditioning Wln,k
= xn,k and

Wrn,k
= yn,k is equivalent to Πn,k = − lnpn,k and �n,k = δn,k with pn,k = Bn,k(xn,k, zn,k)

and δn,k = (Λ − xn,k)/(Λ − zn,k). As exponentials of Gaussian random variables, Bn+1,2k

and Bn+1,2k+1 knowing Wln,k
= xn,k and Wrn,k

= zn,k follow log-normal distributions. As-
suming Bn,k = pn,k and �n,k = δn,k , the usual conditioning formulas (5) and (6) specify the
conditional law of Bn+1,2k and Bn+1,2k+1 as (12) and (13). �

We underline that the outcomes pn+1,2k and pn+1,2k+1 can be greater than one: it just
means that Wmn,k

happens above the threshold in which case the interpretation of pn+1,2k

and pn+1,2k+1 in terms of probability does not hold.
Due to the skewness of log-normal distributions, the “central trend” of the conditional

laws of Bn+1,2k and Bn+1,2k+1 is best outlined by their medians

Med
(
Bn+1,2k | Bn,k = pn,k,�n,k = δn,k

) = p
1+δn,k

n,k ,

Med
(
Bn+1,2k+1 | Bn,k = pn,k,�n,k = δn,k

) = p
1+1/δn,k

n,k .

The average absolute deviations to the median quantify the statistical dispersion of the log-
normal distributions around their central values. Actually the median is the central point
which minimizes the mean absolute deviation and we show in Appendix E1 that

Dev
(
Bn+1,2k | Bn,k = pn,k,�n,k = δn,k

) = p
δn,k

n,k · erf
(√− lnpn,k

)
,

Dev
(
Bn+1,2k+1 | Bn,k = pn,k,�n,k = δn,k

) = p
1/δn,k

n,k · erf
(√− lnpn,k

)
,

where erf denotes the error function.
From there, notice the important following facts:

• The medians are always smaller than the conditioning value pn,k , showing that the proba-
bilities pn+1,2k and pn+1,2k+1 of finding a crossing after refinement in Sn+1,2k and Sn+1,2k+1

decrease on average.
• The deviation expressions reveal that the log-normal distributions increasingly concen-

trate their statistics around their medians for smaller pn,k .

It means that, when refining the scale of sample paths, the outcomes of Bn,k tends to accumu-
late on ever smaller values and the proportion of sample paths satisfying pn,k ≥ ε diminishes
accordingly.

3.1.2 Omission Due to Large Increments

The probabilistic screening constitutes a source of error since it overlooks to investigate
regions for which the probability of a crossing is less than ε. Here, we specify these deficient
situations with the help of the analytical results available for the Wiener process with a
constant barrier. First, remark that the quantity δn,k is the ratio of the distance to the barrier
at time ln,k with the distance to the barrier at time rn,k . For any given pn,k , if xn,k is closer
to the barrier than zn,k , it is obvious that a crossing is more likely to happen in the left child
support Sn+1,2k than in the right child support Sn+1,2k+1. The expressions of the medians
and absolute deviations quantify this effect: they describe how large values of δn,k cause the
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statistics of Bn+1,2k to be distributed on smaller values and the corresponding opposite effect
for the statistics of Bn+1,2k+1.

In the deficient situation for which the algorithm neglects a first-passage time, the sample
path is very close to the barrier at one of the endpoints but the overall probability of a cross-
ing in the support Sn,k remains inferior to ε, meaning that the other endpoint is relatively
far from the barrier. In other words, it means that the sample path exhibits a large varia-
tion between ln,k and rn,k and that δn,k is either negligible or very large. Consequently, even
though pn,k ≤ ε is very small, the value of δn,k can be extremal enough so that the absolute
deviation in one of the child supports is almost one: the eventuality of a crossing in one of
the child supports after refinement cannot be neglected.

3.1.3 Speed of Decay of the Upper Bounds

Along its way to a putative first-passage time, the exploration of a branch of the tree stops as
soon as Bn,k ≤ ε. Bearing in mind that the parameter ε is responsible for the accumulation
of errors, we require it to be set to an extremely small value. At the same time, this require-
ment is detrimental to the computational cost of our method since lowering ε increases the
probability to refine sample paths at high resolution. In view of this, for the algorithm to
be efficient, we hope the following: Given a nested sequence of support Sn,kn , the sequence
Bn,kn decreases fast enough for it to be smaller than ε before the resolution limit case.

Only a few results can be established analytically about the speed of decay of Bn,kn

without making specific assumptions about the sample path. In particular, using the law of
increments of the Wiener process, we prove in Appendix E2 that:

Property 2 Knowing Bn,k = pn,k , the medians of the conditional variables {Bn+1,2k | Bn,k}
and {Bn+1,2k+1 | Bn,k} are equal and satisfy

Med
(
Bn+1,2k | Bn,k = pn,k

) = Med
(
Bn+1,2k+1 | Bn,k = pn,k

) = p2
n,k.

This means that, irrespective of the particular shape of sample paths, the decay of the
bounds is doubly exponential at any depth on average. This result is reminiscent of the scale
invariance of the Wiener process around the constant threshold. Unfortunately, such a simple
result cannot be extended to the absolute deviation.

However, we can strengthen the previous result under additional assumption about the
shape of the sample path. More precisely, if we assume that the sample path remain strictly
below Λ on a given support Sp,q , we can see that:

Property 3 If maxt∈Sp,q Wt < Λ, for all n > p, q2n−p ≤ k < (q + 1)2n−p , we have Bn,k <

Cp,q
2n

where Cp,q is defined as

Cp,q = exp

(
− (Λ − maxt∈Sp,q Wt )

2

Γ

)
< 1.

The previous results directly stems from the expression of the upper bound Bn,kn . The
expression of the constant Cp,q is determined by the distance of the maximum of the sample
path to the threshold. Thus, any nested sequence of bounds Bn,kn vanishes at least doubly
exponentially in supports Sp,q ⊃ Sn,kn for which no crossing happens. Moreover, the further
from the barrier, the fastest is the doubly exponential decay, which underlines the computa-
tional advantage of the algorithm.
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3.2 Properties of the Algorithm

We show that the essential features of the probabilistic screening similarly hold in the gen-
eral case of a Gauss-Markov process X with a continuous barrier L satisfying Assumptions 1
and 2. In particular, we verify the fast decay of the upper bounds Bn,k for finer scale. Such a
property results in two forms of advantage for computational accuracy and efficiency of our
algorithm:

Computational Efficiency: while exploring sample paths at finer scale, the condition
Bn,k ≤ ε is satisfied after a few steps of the recursive exploration, saving us the com-
putational cost of simulating the path at finer resolution.

Computational Accuracy: The limit probability ε of Bn,k for which we neglect to continue
the search for a passage, can be set all the smaller as Bn,k vanishes fast for increasing n,
thus lowering the overall probability to overlook a first-passage.

The present section is organized as follows. First, we establish an upper bound to the
probability of returning an erroneous approximate first-passage time. Second, we justify the
fast decay of the upper bounds Bn,k used in the algorithm and we give a criterion to measure
the algorithm efficacy. Finally, we explain the strategy to set the values of the algorithm
parameters.

3.2.1 Algorithmic Accuracy

In the erroneous case, the algorithm always returns a crossing time that is not the true first-
passage time. This happens when, while exploring sample paths, the algorithm dismisses
regions where a first-passage actually occurs against the odds. As a result, the algorithm
delays the first-passage time.
It is possible to naively estimate an upper bound to the probability of occurrence of such
errors when the algorithm returns a putative first-passage time.

Property 4 Given a parameter value ε > 0 and a time resolution of 2−N , the probability of
error

E (N, ε) = P(τN > τ + 2−N−1),

i.e. the probability that a simulated first-passage in [0,1] does not approximate a true first-
passage, satisfies

E (N, ε) ≤ ε2N−1.

Proof False timings possibly occur when the algorithm halts the search for a first-passage
in a support Sn,k because the simulated values xn,k and zn,k are such that Bn,k(xn,k, zn,k) ≤ ε.
For every such halting situations, the algorithm possibly neglects the occurrence of a cross-
ing, the probability of such an error is then

P
(∃t ∈ SN,k,Xt ≥ L(t) | Bn,k ≤ ε

)

= E
(
Pn,k(Xln,k

,Xrn,k
) | Bn,k(Xln,k

,Xrn,k
) ≤ ε

)
.

By definition of Bn,k as an upper bound to the probability of a crossing Pn,k within Sn,k , the
probability that the algorithm disregards a crossing is clearly dominated above by ε, i.e.

P
(∃t ∈ SN,k,Xt ≥ L(t) | Bn,k ≤ ε

) ≤ ε.
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If we set the limit depth to be N , there are at most 2N−1 halts during each call of the recursive
search procedure. Indeed the algorithm explores the binary tree of supports Sn,k for n ≥ 1,
such that a given segment Sn,k admits children supports if Bn,k ≤ ε. Such a tree has a depth
of at most N levels and a support Sn,k is a leaf if n = N + 1 or Bn,k < ε. There are at most
2N−1 leaves for such a binary tree structure.

This corresponds to the worst-case scenario for which the algorithm explores the sample
path up to depth N on the whole segments and find BN,k ≤ ε for every k. The we have

E (N, ε) = P
(∃k,0 ≤ k < 2N−1 | ∃t ∈ SN,k,Xt ≥ L(t),BN,k ≤ ε

)

≤
2N−1−1∑

k=0

P
(∃t ∈ SN,k,Xt ≥ L(t),BN,k ≤ ε

)

≤ 2N−1 sup
0≤k<2N−1

P
(∃t ∈ SN,k,Xt ≥ L(t),BN,k ≤ ε

)

≤ ε2N−1.

In other words, if we look for first-passage times with a resolution of 2−N , the probability
of an error E (N, ε) per recursive call is inferior to ε2N−1. �

3.2.2 Algorithmic Efficiency

Under Assumptions 1 and 2, we ideally wish to established an upper bound to the complex-
ity of the algorithm. Since the complexity increase linearly with the number of dichotomy
operations, we see that the worse case scenario consists of the situation when every sam-
ple points needs to be simulated, which yields the complexity of the classic Runge-Kutta
method. Unfortunately, there appears to be no direct way to establish analytically the com-
plexity of the algorithm. Nevertheless, because of its obvious dichotomic structure, our al-
gorithm substantially outperforms Euler and Runge-Kutta.

We then prefer to measure the computational efficiency of the algorithm indirectly. The
exploration of a branch of the tree of supports Sn,k stops as soon as Bn,k ≤ ε. The value of
n ≤ N at such a halt defines the local depth of exploration for times in the support Sn,k .

Definition 2 For all s in [0,1], the local depth of exploration ds is the discrete random
variable

ds = sup{n ≤ N | s ∈ Sn,k,Bn,k(Xln,k
,Xrn,k

) > ε}.

The smaller the typical depth of exploration, the fewer sample points are simulated in
regions where a sample path occurs strictly below the barrier, which is desirable for compu-
tational efficiency.

We thus want to estimate the local depth of exploration ds around s to measure the algo-
rithmic efficiency. This is determined by the speed at which Bn,k concentrates its distribution
on vanishing values for finer resolution. In that respect, bearing in mind the case of a stan-
dard Wiener process and a constant threshold, we now show that the doubly exponential
speed of decay still holds in the general case.

To be more precise, assume that for some s, the sample path occurs strictly below the
continuous barrier Xs = y < L(s), so that we can find a neighboring of s for which the
sample points are strictly below L. There exists a unique sequence of indices kn such
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that 0 ≤ kn ≤ 2n−1 and s satisfy kn2−n+1 ≤ s < (kn + 1)2−n+1. It defines a sequence of
nested supports Sn,kn such that we have

⋂
n Sn,kn = {s} and by continuity of L, we have

limn→∞ Ln,kn
= L(s). In view of this, if the increasing sequence Ln,kn

is strictly above y

and if the noise intensity function Γ is continuous, we show in Appendix F that:

Property 5 If L and
√

Γ are respectively homogeneously δL- and δΓ -Hölder continuous,
then conditionally to Xs = y < L(s), for every ω in Ω , we have the following asymptotic
equivalent when n tends to infinity: if min(δL, δΓ ) < 1/2, we have

lnBn,kn(ω) = −2n+1 (L(s) − y)2

Γ (s)
+ O

(
2n(1−min(δL,δΓ ))

)
,

and otherwise for every 0 < δ < 1/2, we have

lnBn,kn(ω) = −2n+1 (L(s) − y)2

Γ (s)
+ O

(
2n(1−δ))

)
.

Moreover, if Pn,kn denotes the conditional probability of a crossing, we have lnBn,kn ∼
lnPn,kn when n tends to infinity.

We stress that we only account for the certainty to reach an asymptotic regime without
information about the time when this regime is reached. The speed at which such a regime
is attained is set by the constant bounds implicitly present in the Landau notations of Propo-
sition 5. Introducing the (ε, δ)-modulus Cf (ε, δ) of a δ-Hölder function f as

Cf (ε, δ) = sup
|t−s|<ε

|f (t) − f (s)|
|t − s|δ ,

Appendix F shows that the previous constants are directly set by the value of the moduli
CL(2−N, δL), CΓ (2−N, δΓ ) and CX(ω)(2−N, δ′), δ′ > 1/2, for every ω in Ω . Large values of
these moduli delay the onset of the decaying behavior. The modulus CX(2−N, δ′), δ′ > 1/2
plays a specific part here since it clearly appears as random variable. However, the Lévy’s
modulus of continuity theorem ensures that limN→∞ CX(2−N, δ′) is bounded by 1.

Keeping in mind the previous limitations, the asymptotic behavior in Property 5 is similar
to the case of the Wiener process and the upper bound approximation becomes exact at
vanishing scale. It suggests to approximate the local depth of exploration ds by the following
quantity:

Definition 3 For all s in [0,1], we define

N(ε, y) = log2(− ln ε) + log2

(
Γ (s)

(L(s) − y)2

)

as an approximation of the local depth of exploration ds .

This quantity results from the sum of two contributions: one from a statistical term ex-
pressing the stringency of the statistical screening and a geometrical term stemming from
the interplay of the distance to the barrier and the noise intensity. Notice that the dependence
on ε through an iterated logarithm indicates that the statistics of ds should vary very weakly
with the parameter ε which can be set very small. A straightforward criterion to measure
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Fig. 4 Computational cost of our algorithm for the first-passages of an Ornstein-Uhlenbeck process U (with
elastic coefficient α = −1 and noise intensity Γ = 1) through a constant boundary Λ = 0.1,0.2, . . . ,2.5 and
initial condition U0 = 0. The termination of the recursion is set by the limit resolution δt = 2−21 = 5×10−7,
and by the tolerance for a false first-passage E ≤ 10−10. The computational cost blows up when the threshold
exceeds the persistence length of the Ornstein-Uhlenbeck process 2/|α| = 2. CPU time is quoted in microsec-
onds per first-passage computed for a single core in a 2.66 GHz Xeon processor

the algorithm computational advantage, is then to compare the typical value N(ε) = N(ε,0)

with the total number of recursions allowed by the resolution. We will assess such a criterion
in the following section, after describing how to choose the parameters values. Beforehand,
we illustrate the computational cost of our algorithm numerically in Fig. 4.

3.2.3 Choice of the Parameters

Here, we explain the strategy to set the value of the various parameters intervening in the
implementation in a segment [0, T ], where T is a positive integer. Focusing on reliability,
we request that the probability of an erroneous result ET is inferior to a fixed parameter
η > 0. Since we simulate first-passage times to describe a full-statistics, we require η to be
very small, typically of order 10−10. It is straightforward to see that ET as a function of the
parameter ε and the limit depth N , is inferior to T E (N, ε). It is then clearly enough to chose
ε satisfying

ln ε ≤ lnη − (N − 1) ln 2 − lnT ,

and we consequently set ε(N,η,T ) = lnη − (N − 1) ln 2 − lnT . With such ε(N,η,T ), the
algorithm necessarily returns an erroneous first-passage with probability less than ET ≤ η.
Concretely, if η = 10−10, let us set the limit depth to N = 21 so that the accuracy is 2−21 �
5 × 10−7. Taking a time window of total length T = 100, we need to chose − ln ε(N,η)

close to 40 to satisfy ET ≤ η. Thus setting the parameters ensures that each returned time is
a valid first-passage with probability superior to 1 − η.

The question is then to inquire wether such values of ε actually saves us a considerable
computational cost, using our previously stated criterion. The answer to that question de-
pends on the particular nature of the first-passage problem, but a prototypical answer can
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Fig. 5 Parametric plot of the median number of Gaussian draws and the median of the first-passage time
for the same conditions as in Fig. 4 with Λ = 0.1,0.2, . . . ,2.5. Notice the logarithmic scale of both axes. As
the boundary is moved away from zero, the mean first-passage time increases rapidly. Inset: We represent
the number of calls to the Gaussian random generators for our method (+) and the classical Euler method
(•) on the same log-log plot. In an Euler scheme, the number of random numbers drawn is equal to the
first passage time divided by the time resolution δt . Given our time accuracy, the number of draws is many
orders of magnitude smaller with our algorithm. Moreover, it is strongly sublinear in the length elapsed when
increasing the time accuracy

be given in the situation of constant α and Γ for an Ornstein-Uhlenbeck process. Under
the constraint that the limit resolution satisfies 2−N � 1/|α|, if the local height of the bar-
rier and the noise intensity are of same order, the main contribution to the local depth of
exploration ds in (3) is determined by the screening term log2(− ln ε(N,η)). As an exam-
ple, if η = 10−10 and α = −1 for a resolution of 2−21, the typical depth of exploration is
d = log2(− ln ε(N,η)) � 6. This has to be compared with the depth of the recursion nec-
essary to simulate exhaustively the sample path up to the limit scale, i.e. N = 21. Clearly,
the typical recursive exploration of a time region halts notably before the limit depth and,
because of the iterated logarithm, this behavior is very slowly varying with the parameters ε

or η.
We illustrate this approach for the first-passage time problem of the Ornstein-Ulhenbeck

U process with α = −1 and Γ = 1 for a constant boundary of value Λ > 0 and an initial
condition U0 = 0. The computational efficiency of the algorithm is essentially determined
by the number of calls to the Gaussian random generator per simulated first-passage. For the
Euler method, the number of Gaussian draws is just the number of time steps necessary to
reach a first-passage and is therefore linear with the typical first-passage time. Equivalently
stated, this number is linearly increasing with the inverse of the limit time step 1/δt = 2N

as opposed to our method which is strongly sub-linear with the inverse of the time resolu-
tion 2N . Given the parameters of the simulation, Fig. 5 demonstrates that the performance
of the algorithm is four to five orders of magnitude faster than an Euler implementation
with a comparable temporal resolution, while keeping a strong guarantee that the passage
determined is indeed the first one.

4 Conclusion

We have presented a probabilistic version of the classical dichotomic search algorithm,
tailored to computing first-passage times of a Gauss-Markov process through continuous
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boundaries. Instead of simulating all sample points up to a given resolution, our method
recursively refines sample paths only in time regions Sn,k where the conditional probabil-
ity of a crossing Pn,k cannot be neglected. This approach relies on the possibility to com-
pute an upper-bound to Pn,k that has a simple analytical solution. If the elastic coefficient
is non-positive and if the barrier is non-negative, it is obtained by locally substituting the
first-passage problem for the Gauss-Markov process and the varying barrier, with a simpler
first-passage problem for a time-changed Wiener process and a constant threshold. Then, the
analytically-known probability Bn,k of crossing for the latter problem rigorously provides us
with an upper bound to Pn,k . Since the contribution of the elastic force becomes negligible
at vanishing scale,3 and since the time-varying barrier can be faithfully approximated by its
infinimum on intervals of vanishing length,4 the identification of the preceding first-passage
problems becomes exact in the asymptotic limit of large n.

While maintaining tight control on the probability of error, our algorithm achieves far
greater computational efficiency than Euler and Runge-Kutta stochastic schemata. Tradi-
tional stochastic numerical methods simulate sample paths at a given resolution until the
barrier is crossed, which overlooks the possibility that a crossing happens between two con-
secutive sample points. At the resolution limit case, our method solves this predicament by
exactly simulating first-passages for a piecewise continuous functions that interpolates the
barrier sample points. When it halts before the resolution limit case, our method can still
produce crossing times that are erroneous first-passage approximations. Yet, by definition
of our probabilistic screening, it is straightforward to compute an upper bound to the overall
probability of error, which guarantees controlled accuracy. At the same time, the fast de-
cay of the upper bound ensures that the halting condition is rapidly attained when sample
paths are strictly below the barrier. Therefore, even if very fine resolution is enforced, our
algorithm saves us considerable computational time by representing sample paths at poor
resolution when far from the barrier, while rigorously controlling the error that introduces.

Before discussing potential applications, we underscore that our method should not be
confused with an adaptive time-step method. In the latter, the time-step is changed heuris-
tically according to an error budget, in an attempt to devote less numerical effort to pieces
of the solution which are better behaved. Our algorithm does not have such an error budget
because the reconstruction of the sample path is exact. The method inherits its recursive,
adaptive nature from the dichotomic search algorithm and not from an adaptive time-step
control.

We expect our algorithm to be advantageously applied whenever it is desirable to com-
pute first-passages without simulating the entire sample paths in detail. This is particularly
relevant to stochastic modeling of both neuronal firing in biology [5, 20, 30, 31] and certain
derivatives in finance [7, 25, 40]. We hope this relatively modest setting is a springboard for
generalizations to multidimensional processes passing through surfaces. Indeed, the recur-
sive scheme that our algorithm uses as its backbone, can be generalized to Gauss-Markov
processes of arbitrary dimensions. Moreover, similar ideas have been applied successfully
to estimate the rate of convergence of the continuous Euler scheme for monitored barrier op-
tions in the multidimensional case [13, 14]. Finally, our approach was motivated by the need
to produce first-passage times even when the barrier is δ-Hölder continuous with δ < 1/2
[22]. In such situations, there are no guarantees that the first-passage time admits a density

3The contribution of the elastic force is of order α2−n at depth n to be compared with Γ .
4The Hölder continuity of the barrier prescribes that there exists δ,C > 0 such that for all n > 0, we have

supk(supt∈Sn,k
L(t) − Ln,k) < C2−δn.
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probability, rather the probability measure of such first-passages is strongly singular (as we
shall soon communicate).
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